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Abstract. A fully variational resonance-valence-bond (RVB) study is performed for two-, three-
and four-legged isotropic spin-1/2 Heisenberg ladders under periodic boundary conditions along
the rungs and periodic/twisted boundary conditions along the chains. By using the full lattice
groups of these systems very accurate results have been obtained for the ground-state bulk limit
properties in the case of the dimer RVB basis. The results reported here represent the best one can
do within the dimer RVBansatzand should be useful when comparing with results obtained from
ana priori fixed structure of the wavefunction. Further results are presented for some finite-sized
systems, extending beyond the dimer RVB approach by including RVB functions containing spin
pairings between non-nearest-neighbour sites. These results indicate that the three-legged ladder
with periodic boundary conditions along the rungs falls into the same universality class of ladders
possessing short-range RVB wavefunctions as the two- and four-legged ladders.

1. Introduction

Over the last few years there has been an increasing theoretical and experimental interest
in spin-1/2 ladders [1], due to recent discoveries of ladder-type superconducting-doped
ceramic materials like Sr0.4Ca13.6Cu24O41 [2]. Spin-1/2 ladder structures are further present in
compounds like(VO)2P2O7 [3] and other cuprates such as Srn−1Cun+1O2n [4], the former one
containing V4+ ions arranged in a two-legged ladder structure while the latter ones possess an
(1/2)(n + 1)-legged ladder configuration of Cu2+ ions. In all these materials, single electrons
are donated from the transition metal ions, forming thus an arrangement or lattice structure of
spin-1/2 particles interacting with each other. Ladders represent quasi-1D transition structures
between the 1D chain and the 2D square-planar lattice, and their study is hence very important
in understanding differences when moving from 1D to 2D systems arising due to quantum
effects [1]. In this context it was found by extensive numerical calculations that ladders with
odd numbers of legs are gapless in contrast to even-legged ones [5], i.e. they require no energy
to be excited to the first excited level. All even-legged ladders possess in principle a finite
energy gap1, starting from an apparently exact value of1 = 1/2 for the two-legged ladder [6]
and decreasing exponentially in value the more closely the ladders approach the zero-gapped
2D square-planar limit.

When trying to obtain properties of infinite quantum systems, which unlike the 1D chain
cannot be solved analytically, the usual way is to perform extrapolations on some finite-
system results, which are obtainable either exactly by exact diagonalizations for small lattices
or approximately by Monte Carlo approaches for bigger lattices. These methods, however,
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apart from inducing often significant extrapolation errors, provide almost no insight into the
structure of the final wavefunction for the infinite system, making it very difficult to identify
the importance of its different locally well defined substructures, which would then give us in
turn directly a measure of the importance of long-range correlations. Recently, a method was
developed for quasi-1D systems which became known as the density matrix renormalization
group (DMRG) approach [7] and which, due to its stepwise build-up of the overall wavefunction
from well defined lattice subunits (or blocks in the language of the DMRG), works best for
those system states not involving significant long-range correlations. The DMRG approach
avoids the necessity of extrapolation by giving directly results of very high accuracy for finite-
size lattices big enough to be considered infinite. Generally, an expansion of the wavefunction
in terms of some well defined substructures would be extremely helpful and would give us a
much better understanding of its nature once the expansion coefficients are known to reasonable
accuracy. In this context the resonance-valence-bond (RVB) class of functions were proposed
in solid-state physics by Anderson [8] in connection with the recently discovered phenomenon
of high-Tc superconductivity [9] and expansions of the wavefunctions of spin-1/2 Heisenberg
lattices in terms of RVB-type functions [10] have received an increased amount of attention
during recent years. The RVB concept however is much older, having its origins in the
formulation of the classical VB model developed by Pauling and Wheland forπ -electronic
systems back in the early 1930s [11]. The Hamiltonian emerging from the classical VB model
is entirely equivalent to the spin-1/2 Heisenberg model and it can be shown that the two resulting
spectra are identical apart from a trivial level shifting [12]. The introduction of RVB functions
was motivated from the chemist’s idea of bond formation between two sites by allowing a
singlet spin pairing between the corresponding two electrons, as was done in the early days of
quantum mechanics when trying to explain the formation of the H2 molecule [13].

While it is in principle possible, due to the Lieb–Mattis theorem [14], to describe exactly
the ground-state wavefunctions of alternate spin-1/2 Heisenberg systems with equal numbers
of the two types of site in a bipartite lattice in terms of all possible types of RVB function, it
was hoped that only a tiny fraction of them would be responsible for the essential features of
the ground-state properties, avoiding thus the combinatorial explosion of the basis, which soon
puts a limit on the size of exactly treatable systems. In this context, the nearest-neighbour or
dimer RVB states were found to give most of the contribution to the ground-state energies, and
the classical RVBansatzfor the wavefunction involves an expansion in terms of dimer RVB
states with equally weighted coefficients. Obvious improvements are subsequently possible,
either by relaxing the constraint of equal coefficients in the dimer RVBansatzor by including
RVB functions of longer range, in which spin pairing is allowed to take place between non-
nearest-neighbour sites. The former improvement does not change dimensions of the RVB
basis and is appropriate for obtaining bulk limit properties due to the size-extensive property of
the basis. The inclusion of long-range RVB functions (i.e. long-bond excitations with respect
to the dimer RVB states) however has to be performed in an exponential type of coupled-cluster
expansion of the wavefunction, including all possible higher excitations of the same type in a
multiplicative way, if one is interested in bulk properties. Limiting the RVB basis to contain
just up ton-tuply excited RVB functions withn fixed would give no improvement in the
N →∞ limit. However, for fixed and not too big values ofN , this last type of basis can give
valuable information concerning the relative importance of the different types of long-range
RVB function.

In this paper I present results on the ground state of the isotropic two-, three- and four-
legged spin-1/2 ladders using a fully variational RVBansatz. Two types of study were
performed. For a finite-sized system of each type of ladder the inclusions of long-range
RVB functions of increasing excitation level were investigated and the results were compared
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to those obtained from exact diagonalizations. The second type of study involved calculations
on finite-sized systems using a dimer RVB function expansion followed by an extrapolation of
the results to the bulk limit. I found that twisted rather than periodic boundary conditions along
the chains gave much faster convergence to the bulk properties. In both types of calculation
I made full use of the lattice groups, obtaining as a by-product also the ground-state lattice
group states of the respective ladders.

2. Theory

The isotropic spin-1/2 Heisenberg Hamiltonian, as used in this paper, reads

Ĥ = J
∑
i↔j

Si · Sj (1)

in which i ↔ j indicates nearest-neighbour pairs of spins in the lattice andJ denotes the
overall positive antiferromagnetic exchange constant. Though this Hamiltonian is simple in
appearance, characterizing the structure of its exact ground state represents a very difficult
task for large connected lattices, due to the overall correlation of the spins involved. The
combinatorial explosion of the spin basis severely limits the size of tractable systems, and
exact calculations can at present be performed only for systems containing up toN ≈ 30
spin-1/2 sites, using sophisticated methods which make full use of either symmetric [15] or
unitary group [16] properties of the entire spin basis.

Next, the concept of the RVB basis in connection with the above Hamiltonian is introduced
for anN -site lattice with evenN . Indexing the sites of the lattice with the positive natural
numbers from 1 toN , one can partition the resulting set of positive numbers{P } into N/2
disjoint two-numbered setsPkl . Each such partition is then associated with a spin product
functionφ, in which each two-numbered setPkl of the partition gives rise to a singlet spin
pairing between the sitesk andl:

{P } =
N/2∑
k,l

⊕
Pkl −→ φ =

N/2∏
k,l

1√
2
(αkβl − βkαl). (2)

Each of these resulting spin product functions is called a RVB function, the name reflecting
the idea of constructions of bonds between the different sites of the lattice. From the above
method of construction, one can deduce some important properties of the complete overall set
{φ} of RVB functions. Since eachφ is made up only of products of singlets, it is itself a singlet,
i.e. it belongs to theS = 0 subspace of the entire spin basis. The number of RVB functions
which can be constructed is equal to the number of different two-numbered set partitions of
{P } and hence is equal to(N − 1)!!. On the other hand the dimension of{φ} is known to
be equal to the dimension of theS = 0 subspace of the entire spin basis, which is equal to
N !/(N/2 + 1)!(N/2)!. This last fact follows from the observation that{φ} always contains a
Rumer set of RVB functions, which are known to form a basis for the above-mentionedS = 0
subspace and which are formally constructed by placing the numbers of{P } on a circle and
allowing only those spin pairings which give non-crossing lines inside the circle [17]. Hence
one sees that{φ} represents a linearly dependent set of RVB functions.

A very important fact about RVB functions is their easy transformation under the symmetry
operations of the lattice groups. IfG denotes the lattice group of a particular system, then
each of its elementsg ∈ G can be written as a permutation defined on the set{P }. From
equation (2) it then follows immediately that

gφ = ±φg (3)
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whereφg stands for the RVB function obtained fromφ in equation (2) by permuting and
rearranging to their original order all thek, l index pairs according tog, the + or− sign holding
if an even or odd number of index pair rearrangements has to be performed, respectively.G-
adaptation of the RVB basis by means of projection operators is thus relatively easy, particularly
for one-dimensional irreps ofG, which are of interest in this paper. In this case one can deduce
from equation (3) that the original set of RVB functions{φ} decomposes intonon-overlapping
subsets of symmetry-adapted RVB functions{χ} in the sense that no twoχs can possess a
commonφ. Hence the usual linear dependency problems associated with the use of projection
operator methods are not present in these cases and even very large RVB function sets can be
G-adapted with no major computational difficulties.

One of the major drawbacks of the RVB basis is its completely non-orthogonal nature,
i.e. 〈φp|φq〉 6= 0 for all p, q. Formulae for evaluation of the overlaps in terms of some
diagrammatic superposition structures betweenφp andφq were derived a long time ago by
Pauling for theS = 0 andS = 1/2 cases [11] and subsequently extended to a more general
type of RVB basis (i.e.S 6= 0, 1/2) by Cooper and McWeeny and by Sutcliffe [18]. Once an
overlap or metric matrix elementMpq has been calculated, the corresponding matrix element
Hpq for the Hamiltonian in equation (1) is obtained at only slightly additional cost. Below,
the results in connection with anS = 0 RVB basis are presented:

Mpq = 〈φp|φq〉 = (−1)r2n−N/2 (4)

Hpq = 〈φp|Ĥ |φq〉 = 3

4
MpqJ

∑
i↔j

δij,L. (5)

In order to explain these equations we need the concept of a Rumer diagram associated with
eachφ in equation (2) [17]. To construct this diagram we place the numbers of{P } on a circle
and draw arrows between all singlet spin pairingsk, l such that each arrow points fromk (tail)
to l (head). We can then construct a superposition pattern betweenφp andφq by superimposing
their associated Rumer diagrams. Then, in equations (4) and (5),r is the number of arrow
reversals needed to bring all arrows in the superposition pattern betweenφp andφq head to
head and tail to tail,n denotes the number of closed loops (or islands) in the superposition
pattern andδij,L is non-zero only ifi and j belong to the same loopL, in which case its
value is +1 or−1 if the distance betweeni andj in L is even or odd, respectively. Using the
G-adapted RVB basis{χ} we can rewrite equations (4) and (5) in terms of this basis in the
following way. Denoting for example bŷO the projection operator for the totally symmetric
irreducible representation ofG, one can write for an element ofχs ∈ {χ}, using equation (3),

χs = Ôφp = 1

|G|
∑
g

gφp = 1

|G|
∑
g

±φgp (6)

and from the Hermitian and idempotent nature of the projection operator, i.e.Ô† = Ô2 = Ô,
it follows that

Mst = 〈χs |χt 〉 = 〈Ôφp|φq〉 = 1

|G|
∑
g

±〈φgp|φq〉 (7)

Hst = 〈χs |Ĥ |χt 〉 = 〈Ôφp|Ĥ |φq〉 = 1

|G|
∑
g

±〈φgp|Ĥ |φq〉 (8)

where the elements〈φgp|φq〉 and〈φgp|Ĥ |φq〉 are evaluated according to the rules in equations (4)
and (5). Hence one sees that, as a rule of thumb, dimensions ofM andH are reduced by a
factor of roughly the order|G| of the lattice group.
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A particularly useful subset of the entire original RVB set{φ} is the set{φK} composed
of all dimer RVB functions; the reason for choosing the suffixK will become clear soon.
These functions, are defined as having only spin pairings between nearest neighbours in the
lattice and their number, denoted in the following byK, is usually much smaller than the
order and even the dimension of{φ}. In the VB theory of planarπ molecular systems, these
dimer RVB functions are in one-to-one correspondence with the so-called Kekulé functions
and their importance is reflected in the derivation of several qualitative rules dealing with the
stabilization ofπ -systems, particularly for benzenoid systems containing fused six-membered
rings [11,19]. AlthoughK � Dim{φ}, RVB calculations based on{φK} alone usually recover
around≈90% of the ground-state energy (see, for example, table I in [20]), even for the most
unfavourable case of the linear isotropic chain lattice. This property makes{φK} an ideal
candidate for finding the lattice group symmetry of the ground state, especially for big lattices
containing frustration (such as those of fullerenes), for which no general rules are known. The
dimer RVB functions are thus of invaluable help in obtaining qualitative information about the
lattices. Note that as the coordination number of the lattice increases,K also increases, so
the set{φK} approaches completeness, giving exact results for infinitely coordinated lattices,
where the set{φK} becomes identical in nature to{φ}.

To get a more systematic description of the set{φ}, one can classify eachφ ∈ {φ}
according to its degree of excitatione depending on how many singlet pairs inφ are between
non-nearest-neighbour sites in the lattice. Furthermore, within each set{φe} of equally excited
RVB functions, one can label eachφe ∈ {φe} by the intersite distanced1, d2, . . . , de associated
with the first, second,. . . ,eth excited singlet pair inφe. An intersite distance between two sites
is defined as theminimumnumber of nearest-neighbour site pairs between those sites (in the
case of a 2D square lattice this distance is identical to the so-called Manhattan distance [10]).
Hence we can formally decompose the RVB set in the following way:

{φ} = {φK} ⊕
emax⊕
e=1

e×dmax⊕
d=e×2

{φed} (9)

wheree × 2 ande × dmax denotee excited singlet pairs of distance 2 anddmax , respectively.
Note that the second sum in equation (9) runs over all distance value combinations such that
d1 6 d2 6 · · · 6 de. One can proceed even further by noting that each symmetry operation
g ∈ G of the lattice group preserves excitation and distance properties on eachφK andφed ,
i.e.gφK ∈ {φK} andgφed ∈ {φed}. Hence both sets{φK} and{φed} can beG-decomposed and
equation (9) can be rewritten as

{φ} =
(γ max⊕
γ=1

{φK(γ )}
)
⊕
( emax⊕
e=1

e×dmax⊕
d=e×2

γ max⊕
γ=1

{φed(γ )}
)

(10)

whereγ stands for an index counting differentG-adapted sets and depends one as well as
on d. Equation (10) represents the basis upon which the computer program for the present
calculations was written and holds for any lattice whatsoever.

3. Results and discussion

In this section I present results obtained forL-legged ladders in the range 26 L 6 4 with
periodic boundary conditions along the rungs forL = 3 andL = 4. The sites of each rung
were numbered consecutively, whereas the sites of the chains were numbered in such a way
that the absolute difference between any two nearest-neighbour sites isL. Figure 1 shows a
pictorial view of the ladders together with the numbering scheme used.
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Figure 1. The labelling scheme used for theL-legged ladders with periodic boundary conditions
kL + 1↔ (k + 1)L; k = 0, 1, . . . , R − 1 along the rungs forL > 2.

The following boundary conditions were used along the chains:

periodic (PBC): k ↔ N − L + k k = 1, 2, . . . , L
twisted (TBC): k ↔ N − L + k + 1 k = 1, 2, . . . , L− 1

L↔ N − L + 1.

Note that the PBC/TBC give rise to frustration between the first and last rungs of the lattice
depending on the parity of the numberR = N/L of rungs.

3.1. Lattice groupsG and numberK of dimer RVB functions

In order to establish the lattice groups of the ladders, the following lattice operations are
introduced in the form of permutational operators, based on the numbering scheme used in
figure 1:

ĈN =
(

1 → N − L N − L + 1 N − L + 2 → N

L + 1 → N L 1 → L− 1

)
(11)

ĈR =
(

1 → N − L N − L + 1 → N

L + 1 → N 1 → L

)
(12)

Ĉ2 =
(

1 → N

N ← 1

)
(13)

ĈL =
k=R−1∏
k=0

(
1 + kL → L− 1 + kL L + kL
2 + kL → L + kL 1 + kL

)
(14)

Ĉs =
k=R−1∏
k=0

(
1 + kL → L + kL
L + kL ← 1 + kL

)
. (15)

In these expressions, the symbols→ and← indicate increase and decrease in units of 1. Note
that ĈN andĈR operate on sites along the chains, whileĈL andĈs interchange sites along
the rungs only. Furthermore, the operationsĈL andĈs become identical forL = 2. Using
each of the above operations in equations (11)–(15) as generators, one can construct the five
cyclic groupsCN , CR, C2, CL andCs of ordersN ,R, 2,L and 2, respectively. From these cyclic
groups one can form two product groups, namelyDN = CNC2 andDRhCL = CRC2CsCL, which
are the lattice groups for the TBC and PBCL-legged ladders, respectively. Table 1 gives an
overview of the orders of these groups for the ladders considered in this paper, together with
the characters of the generators for their respective ground states.
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Table 1. Lattice groupsG and characters of the generators for the ground states of the PBC and
TBCL-legged ladders withL = 2, 3, 4.

L BC G Ord{G} ĈN ĈR ĈL Ĉ2 Ĉs

2 PBC DRh 2N R = even + 1 + 1 + 1
odd + 1 −1 −1

TBC DN 2N even −1 + 1
odd −1 −1

3 PBC DRhC3 4N R/2= even + 1 + 1 + 1 + 1
odd −1 + 1 −1 + 1

TBC DN 2N even −1 + 1
odd + 1 −1

4 PBC DRhC4 4N + 1 + 1 + 1 + 1

TBC DN 2N + 1 + 1

Next some recursion relations are presented for evaluating the number of dimer RVB
functions. Denoting byPR andQR the numbersK of dimer RVB functions for open and
periodic or twisted boundary conditions forL-legged ladders consisting ofR periodic rungs,
respectively, these relations are given by

L = 2: PR = PR−1 + PR−2 P0, P1 = 1, 1 (16)

L = 3: PR = 5PR−2 − PR−4 P0, P2 = 1, 4 (17)

L = 4: PR = 3PR−1 + 3PR−2 − PR−3 P0, P1, P2 = 1, 2, 9. (18)

Relations (16)–(18) are easily proved by adding one periodic rung at a time and counting
the resulting extra dimer RVB functions. Note that relation (16) reproduces the Fibonacci
sequence, and hence for the two-legged ladderPR is equal to one of the Fibonacci numbers [21].
Having thePR-numbers, the equations for theQR-numbers are given by

L = 2: QR = PR + PR−2 + 2(δper,R=even+ δtw,R=odd) (19)

L = 3: QR = 2PR + 6δper + 6
R/2∑
i=2

(i − 1)PR−2i (20)

L = 4: QR = 6PR−1 + 2δR=even− 4δR=odd +WR(δper,R=even+ δtw,R=odd) (21)

with

WR = 2WR−1 +WR−2 − 4(1 + 4δR=odd)

W2,W3 = 22, 30
(22)

whereδx,y,... is equal to 1, if simultaneously the conditionsx, y, . . . are fulfilled, 0 otherwise
andper and tw are shorthand notation for periodic and twisted boundary conditions along
the chains. As an example of application of the above formulae, the numberQ7 of dimer
RVB functions for a 4× 7 TBC ladder is evaluated. First one must evaluateP6 using
equation (18) andW7 using the recurrence relation (22). One obtainsP6 = 1681 and
W7 = 958. For a 4× 7 TBC ladder, one hasδtw,R=odd = δR=odd = 1 and equation (21)
gives thusQ7 = 6P6 − 4 +W7 = 11 040. An interesting quantity is further the number of
dimer RVB functions per site in the limitN → ∞, expressed asK1/N . One obtains for the
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above ladders, using equations (16)–(18),

L = 2: lim
R→∞

2R
√
PR =

(
1 +
√

5

2

)1/2

≈ 1.2720 (23)

L = 3: lim
R→∞

3R
√
PR =

(
5 +
√

21

2

)1/6

≈ 1.2984 (24)

L = 4: lim
R→∞

4R
√
PR = (2 +

√
3)

1/4 ≈ 1.3899. (25)

Comparing the values obtained for theL = 2 andL = 4 ladders with the value obtained
for the infinite 2D square lattice (i.e.L = ∞) of limN→∞K1/N = eC/π ≈ 1.3385, where
C =∑∞n=1 (−1)nn−2 is Catalan’s constant [22], one can deduce that the exact energy per spin
values for the ground state will be ordered in the sequenceL = 2, L = ∞ andL = 4 as is
indeed the case, the exact values being−0.578 [5,23],−0.669 [24] and−0.683 [25] in units
of J , respectively. Note that including the value ofL = 3 in the above comparison makes no
sense, due to frustration present along the rungs.

3.2. Variational dimer RVB calculations

This subsection presents variational dimer RVB results on the ground state for some finite-
sized two-, three- and four-legged PBC and TBC ladders, together with their extrapolated bulk
values. Full use was made of the lattice groups introduced in the last subsection, in order
to perform calculations on some reasonably sized systems. For the extraction of the lowest
eigenstates a modified Davidson algorithm was used to allow for an overlap matrix different
from unity (for details of the necessary modifications see [20]). Tables 2, 3 and 4 give the
results obtained for the energies per spin. The most striking observation from the data in these
tables is the much faster convergence to the bulk energies for the chain-frustratedL = 2 and
L = 4 ladders. For the 2× 20 ladder, the chain-frustrated TBC ladder already gave an energy
per spin value to an accuracy of within 10−10, whereas the corresponding chain-alternate PBC
one had its energy value converged to within only 10−6. The same pattern was observed for the

Table 2. Ground-state energy per spin(E0/spin) results in units ofJ forL = 2 PBC [TBC] ladders
with alternation (alt) and frustration (frus) along the chains, together with orders of the original
{φK } andG-adapted{χK } dimer RVB spaces.

R Ord{φK } Ord{χK } E0/spin(alt) E0/spin(frus)

8 49 [47] 9 [8] −0.560204 [−0.558228]
9 76 [78] 9 [10] [−0.559204] −0.558247

10 125 [123] 15 [14] −0.558716 [−0.558254]
11 199 [201] 16 [17] [−0.558480] −0.558255
12 324 [322] 27 [26] −0.558365 [−0.558256]
13 521 [523] 31 [32] [−0.558309] −0.558256
14 845 [843] 50 [49] −0.558281 [−0.558256]
15 1364 [1366] 64 [65] [−0.558268] −0.558256
16 2209 [2207] 100 [99] −0.558262 [−0.558256]
17 3571 [3573] 133 [134] [−0.558259] −0.558256
18 5780 [5778] 210 [209] −0.558257 [−0.558256]
19 9349 [9351] 291 [292] [−0.558256] −0.558256
20 15129 [15127] 456 [455] −0.558256 [−0.558256]

∞ −0.5582557513
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Table 3. Ground-state energy per spin(E0/spin) results in units ofJ forL = 3 PBC [TBC] ladders
with alternation (alt) and frustration (frus) along the chains, together with orders of the original
{φK } andG-adapted{χK } dimer RVB spaces.

R Ord{φK } Ord{χK } E0/spin(alt) E0/spin(frus)

6 224 [218] 12 [12] −0.567597 [−0.550835]
8 1058 [1052] 30 [36] −0.550525 [−0.543217]

10 5054 [5048] 77 [112] −0.542091 [−0.538884]
12 24200 [24194] 252 [400] −0.538159 [−0.536823]
14 115934 [115928] 852 [1511] −0.536474 [−0.535936]
16 555458 [555452] 3278 [6089] −0.535789 [−0.535573]

∞ −0.5351

Table 4. Ground-state energy per spin(E0/spin) results in units ofJ forL = 4 PBC [TBC] ladders
with alternation (alt) and frustration (frus) along the chains, together with orders of the original
{φK } andG-adapted{χK } dimer RVB spaces.

R Ord{φK } Ord{χK } E0/spin(alt) E0/spin(frus)

4 272 [194] 24 [13] −0.676683 [−0.637516]
5 722 [888] 30 [37] [−0.663023] −0.644667
6 3108 [2702] 101 [82] −0.656242 [−0.646946]
7 10082 [11040] 200 [244] [−0.652424] −0.647571
8 39952 [37634] 642 [683] −0.650336 [−0.647757]
9 140450 [146024] 1662 [2196] [−0.649188] −0.647809

10 537636 [524174] 5351 [6923] −0.648564 [−0.647824]

∞ −0.64785

L = 4 ladders, enabling one to extrapolate the energy of the bulk system to a fairly accurate
value believed to be accurate within 10−5. For theL = 3 ladders almost no difference was
observed in the convergence pattern, the energy for the chain-alternate systems forR rungs
being always almost equal to the energy of the chain-frustrated ones withR − 2 rungs with
modest convergence to the limit. Consequently, theL = 3 extrapolated energy value is the least
accurate of the three. A comparison with the values of−0.556 029 [21] and−0.641 489 [26]
for theL = 2 andL = 4 ladders with an equally weighted dimer RVB functionansatzshows
that there is only slight improvement when allowing for a full variational interaction between
the dimer RVB functions, this improvement being more pronounced for theL = 4 ladder. This
shows that within the dimer RVB functional space for alternate lattices the equally weighted
dimer RVB functionansatzis reasonable for the present quasi-1D systems. For oddL with
periodic rungs there is noa priori well defined equal-weighted dimer RVB functionansatzdue
to frustration along the rungs, which prevents a phase assignment to all dimer RVB functions
such that all the entries of the overlap matrixMpq in equation (4) are positive. However,
one can define an equal-weighted dimer RVB functionansatz aftera variational dimer RVB
calculation has been carried out, taking as the phase factors the corresponding signs of the
resulting variational wavefunction, i.e. letting the variational calculation choose the sign.

It would be interesting to see what happens to the variational energy gain in the dimer
RVB ansatzas one moves to higher-leggedL > 4;L = even ladders and in particular what
the situation is for the 2D square-planar lattice. Will the energy gain be less or greater than for
theL = 4 ladder studied in this paper? Variational dimer RVB calculations were performed
on fragments of the 2D square-planar lattice by Johnson and Subbaswamy [27], producing
on extrapolation an energy per spin value of−0.600J for the infinite lattice, which can be
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compared with results from the equal-coefficient dimer RVBansatz, namely−0.604J [10]
obtained from a Monte Carlo study on 2D lattice fragments and−0.599 [28] obtained from
extrapolation on results of finite-legged ladders. These values suggest no energy difference
between the two approaches. However, the variational RVB calculations performed in [27]
made no use of the lattice group symmetry and were therefore limited by calculations performed
on rather smallN 6 20 2D lattice fragments, inducing thus a possibly great extrapolation error
on their bulk limit result. Fully variational RVB calculations are difficult to perform for the 2D
square-planar lattice, because of the need for reasonably large lattice sizes for extrapolation
and the consequent intractability of the large resulting RVB spaces even when using the full
lattice groups.

For the absolute values of the spin–spin correlation functions of distance 1 along the
rungs and distances 1, 2, 3 and 4 along the chains, the following values presented in table 5
were obtained either directly (L = 2) or upon extrapolation (L = 3 andL = 4). A notable
feature of this table is the observation that frustration along the rungs lowers considerably its
correlation values, a fact which is also observed when performing exact calculations. Also
the rung correlation value of theL = 4 case is lower than the corresponding one of the
L = 2 ladder. A very naive explanation of this trend can be given by looking only at the
rung part of the ladders. For theL = 2 rung there is only one way to place a spin pairing.
For theL = 4 rung, because of periodic boundary conditions, there are two possible ways,
whereas for theL = 3 one, the spin pairing can be placed in three different ways, leaving
one site of the rung non-paired. Hence the ratios for the rung correlation values should be
approximately 1:1/3:1/2 for the respective two-, three- and four-legged ladders, which by
looking at table 5 can be seen to be roughly fulfilled. Again one can compare the absolute
distance-1 correlation values obtained forL = 2 (rungs= 0.505 991 and chain= 0.305 260)
andL = 4 (rungs= 0.377 35 and chain= 0.270 50) with the ones obtained from the equally
weighted dimer RVB functionansatz[26]: L = 2 (rungs= 0.539 779 and chain= 0.286 139)
andL = 4 (rungs= 0.395 096 and chain= 0.246 393), showing again that the variational
dimer RVB calculations alleviate only slightly the main defect of all dimer RVB calculations in
putting too much correlation on the rung part and too little along the chain part of the ladders.

Table 5. Absolute values of spin–spin correlation functions for distance 1 along the rungs (rung)
and distances 1, 2, 3 and 4 along the chains (chain1, chain2, chain3 andchain4) for the infinite
two-, three- and four-legged ladders in the variational dimer RVB space.

L rung chain1 chain2 chain3 chain4

2 0.505991 0.305260 0.051365 0.011751 0.002686
3 0.1974 0.3378 0.0493 0.0173 0.0039
4 0.37735 0.27050 0.05115 0.01331 < 0.00334†

† This value corresponds to the one obtained for the 4× 10 TBC ladder, since too few values were
obtained for extrapolation.

3.3. Variational excited RVB calculations on some finite systems

This subsection is devoted to some finite-sized-ladder calculations involving excitations beyond
the simple dimer RVBansatz. The choice of the finite-sized two-, three- and four-legged
ladders was governed by the possibility of performing exact calculations on one hand and
some fairly excited RVB calculations on the other hand. Hence the 24-sited 2× 12, 3× 8 and
4× 6 PBC ladders were chosen and the results are presented in table 6. Several observations
can be made from these results. First, excited RVB functions with onlyd = 3 functions give a
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Table 6. Ground-state energy(E0) results in units ofJ and distance-1 correlation values along the
rung(rung) and the chain(chain) part for the 2×12, 3×8 and 4×6 PBC ladders obtained using
excited RVB functions as presented in equation (10) on top of the dimer RVB functional space
{φK }. The designationsγ = ccc, ccr andcrr denote theG-invariant distance-3 types of excitation
starting from a specific site and moving to the next sites along chain–chain–chain, chain–chain–
rung and chain–rung–rung paths, respectively. Omittedd- andγ -designations imply the full range
of respective values.

e, d, γ in {φed (γ )} Ord{φed (γ )} E0 rung chain

2× 12 ladder

Dimer RVB 324 −13.400752 −0.505092 −0.305818
e = 1, d = 3, γ = ccc 1188 −13.656022 −0.473714 −0.332144
e = 1, d = 3, γ = ccr 1668 −13.750182 −0.476831 −0.334509
e = 1, d = 3 2532 −13.795453 −0.468176 −0.340723
e = 1 3732 −13.801258 −0.466853 −0.341626
e = 2, d = 3, 3 11028 −13.853735 −0.459208 −0.347635
e = 2 99708 −13.875178 −0.454350 −0.350957
Exact† 208012 −13.880932 −0.452918 −0.351913

3× 8 ladder

Dimer RVB 1058 −13.212602 −0.187473 −0.363052
e = 1, d = 3, γ = ccc 6602 −13.675768 −0.185942 −0.383882
e = 1, d = 3, γ = ccr 9218 −13.687031 −0.187051 −0.383242
e = 1, d = 3 14762 −13.800578 −0.186172 −0.388852
e = 1 41114 −13.803729 −0.186198 −0.388958
e = 2, d = 3, 3 95894 −13.899884 −0.185945 −0.393216
Exact† 208012 −13.911234 −0.185681 −0.393954

4× 6 ladder

Dimer RVB 3108 −15.749810 −0.359582 −0.296661
e = 1, d = 3, γ = ccc 8532 −15.991749 −0.355161 −0.311162
e = 1, d = 3, γ = crr 16260 −16.153227 −0.366205 −0.306846
e = 1, d = 3, γ = ccr 25668 −16.275739 −0.354072 −0.324084
e = 1, d = 3 44244 −16.426147 −0.358229 −0.326194
e = 1 49284 −16.426925 −0.358194 −0.326261
e = 2, d = 3, 3 326544 −16.536758 −0.358034 −0.330998
Exact† 208012 −16.552514 −0.357721 −0.331967

† All these values were calculated in the exactS = 0 spin space with the SPINSGA program [29],
making full use of the SU(2) symmetry of the spin basis.

far larger contribution to the energy than any otherd-type, as can be seen by comparing both
e = 1, d = 3 ande = 1 results for the two- and three-legged ladders. The corresponding
results for the four-legged ladder are not conclusive enough, thee = 1, d = 3 RVB space
covering almost the entiree = 1 RVB space. Within eache = 1, d = 3 set, the different types
of G-adapted subset (ccc, ccr andcrr) give comparable contributions to the energy when
including them separately, the amount each of them contributes being roughly proportional
to their respective orders. Still the entiree = 1, d = 3 set gives a substantial lowering as
compared to each of its subsets; in other words there is no single dominante = 1, d = 3
subset. Hence in excited RVB calculations the single excitations most important by far in the
wavefunctions are those coming from theentire e = 1, d = 3 set, even in the presence of
frustrations, as shown by the three-legged ladder results. This result is consistent with excited
RVB calculations [30] performed on some fullerene lattice structures with 206 N 6 60
containing five- and six-membered rings as opposed to the three- and four-membered rings
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in the present ladders; hence this result seems to be quite universal. The inclusion of the
e = 2, d = 3, 3 set on top of the dimer RVB set already gives≈99, 9% of the true ground-
state energies and results very close to the true correlation values, even for the 2× 12 ladder,
where this type of RVB space is of much lower order than the exact spin space. Thus the dimer
RVB plus thee = 2, d = 3, 3 set cover the essential features of the ground state of lattices
in the range of sayN 6 60. Note that this last type of RVB space is not free of problems,
the main drawback being the possibility of linear dependencies within the RVB functions as is
obviously the case for the 4× 6 ladder, in which the order of thee = 2, d = 3, 3 set alone far
exceeds the dimension of the exact spin space. However the bigger the lattice and the lower
their coordination numbers, the less likely it is that linear dependency problems will occur.

4. Summary and conclusions

In this paper fully variational RVB calculations were performed for two-, three- and four-legged
ladders with periodic boundary conditions along the rungs and periodic/twisted boundary
conditions along the chains. In the dimer RVB space approximation some fairly large lattices
were treated, due to consequent use of the respective lattice groups. It was found that chain-
frustrated ladders rather than chain-alternate ones lead to much faster convergence for both
the energy per spin and the correlation function values, this feature enabling very accurate
extrapolations to the respective bulk limit properties. The observed convergence patterns for
the energies were quite different between theL = 2 andL = 4 ladders and theL = 3 ladder.
In the former ones, chain alternation and chain frustration approach theN → ∞ limit from
two opposite sides, namely from below (lower energy) and above (higher energy), respectively.
TheL = 3 ladder on the other hand approaches this limit only from below, i.e. both chain-
alternate and chain-frustrated finite lattices are always lower in energy than the corresponding
infinite lattice. The resulting energy per spin values obtained for theL = 2 andL = 4 ladders
are only slightly lower than the corresponding ones obtained from an equally weighted dimer
RVB functionansatz, the lowering being more pronounced for theL = 4 ladder. The results
presented in this paper should be useful when comparing with results obtained in the same
space but with ana priori fixed structure of the wavefunction. As a by-product of the present
calculations, the lattice group states for the ground states were obtained and given in the form
of their one-dimensional characters for the corresponding lattice group generators.

It was further shown, from excited RVB calculations on some finite ladder systems, that
excited RVB functions containing long spin pairings withd = 3 are by far the most important
ones, even for such highly frustrated systems as the cylindrical three-legged ladder considered
in this paper. For theL = 2 andL = 4 ladders this result comes as no surprise, since it is
known that they belong to the short-range RVB universality class with excited RVB function
amplitudes in their ground-state wavefunctions decaying exponentially ind and with a finite
excitation gap [5]. For theL = 4 ladder this result is insensitive to the boundary conditions
along the rungs. ForL = 3 the type of boundary condition used along the rungs is important.
Open boundary conditions lead to power-law-decaying excited RVB function amplitudes and
the system becomes gapless. As a consequence, excited RVB functions withd > 3 are
important and not negligible in describing the ground state. On the other hand, the similarity
in excited RVB results obtained in the present paper between theL = 2 andL = 4 ladders and
the cylindricalL = 3 ladder shows that in contrast to theL = 3 ladder with open boundary
conditions along the rungs, the cylindricalL = 3 ladder should fall into the short-range RVB
universality class with a finite excitation gap, a picture also supported by recent DMRG studies
on this system [31].
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